Benchmarking and Improving Compositional Generalization of Multi-aspect Controllable Text Generation

Tianqi Zhong¹*, Zhaoyi Li^{1,2}*, Quan Wang³, Linqi Song², Ying Wei⁴, Defu Lian¹, Zhendong Mao^{1†} ¹University of Science and Technology of China; ²City University of Hong Kong; ³Beijing University of Posts and Telecommunications; ⁴Nanyang Technological University

Motivations:

- Compositional generalization is a crucial property of multi-aspect controllable text generation, which refers to the model's ability to generate text with attribute combinations recombined by single attributes from the training data.
- Previous work mainly focused on enhancing the performance of multi-attribute controllable text generation within the training data distribution, while neglecting the model's generalization capabilities outside of the training data distribution¹.

(positive, male)

Meta-MCTG Algorithm:

Inspired by previous meta-learning works³ targeting generalization, we aim to leverage Model-Agnostic Meta Learning (MAML⁴) to mitigate the overfitting problem in join-training-based MCTG.

Split the whole dataset C into two disjoints sets: in-distribution set $\mathcal{C}_{i.d.}$ and compositional set \mathcal{C}_{comp} . The formal definition of an eligible split $s(\mathcal{C}) = \mathcal{C}_{i.d.}, \mathcal{C}_{comp}$ as following:

$$\mathcal{C} = \mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_m = \{ \left(A_i^{t_i} \right)_{1 \le i \le m} | 1 \le t_i \le a_i \}$$

 $\mathcal{C} = \mathcal{C}_{i.d.} \cup \mathcal{C}_{comp}, \mathcal{C}_{i.d.} \cap \mathcal{C}_{comp} = \emptyset$

$$\{att | \exists c \in \mathcal{C}_{comp}, att \in c\} \subseteq \{att | \exists c \in \mathcal{C}_{i.d.}, att \in c\}$$

Protocol One: Hold-Out

 $S_{Hold-Out} = \{ (\mathcal{C}_{i.d.}, \mathcal{C}_{comp}) | \mathcal{C}_{comp} \in \mathcal{C}, | \mathcal{C}_{comp} | = k, \mathcal{C}_{i.d.} = \mathcal{C} \setminus \mathcal{C}_{comp} \}$

Protocol Two: ACD.

1. Inspired by Keysers². Calculate frequency density of $(A_i^{t_i}, A_i^{t_j})$: $f_{\mathcal{C}}\left(\left(A_{i}^{t_{i}}, A_{j}^{t_{j}}\right)\right) = \frac{\sum_{c \in \mathcal{C}} \mathbb{I}\left(A_{i}^{t_{i}} \in c \land A_{j}^{t_{j}} \in c\right)}{\sum_{c \in \mathcal{C}} \sum_{v \in c \land v \in c \lor v \neq v} \mathbb{I}(1)}, \mathcal{C} \in \{\mathcal{C}_{i.d.}, \mathcal{C}_{comp}\}$

2. Introduce the Chernoff Coefficient S(P, O)

Results in Meta-MCTG:

Reference:

[1]Zeng, Weihao, et al. "Seen to Unseen: Exploring Compositional Generalization of Multi-Attribute Controllable Dialogue Generation." Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2023. [2]Li, Da, et al. "Learning to generalize: Meta-learning for domain generalization." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018. [3]Conklin, Henry, et al. "Meta-Learning to Compositionally Generalize." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.

$$P = (p_1, p_2, ..., p_n), Q = (q_1, q_2, ..., q_n)$$

$$\Rightarrow S(P, Q) = \sum_{i=1}^{n} p_i^{\alpha} q_i^{1-\alpha} \in [0, 1]$$

5. Define the ACD: $D(P_{i.d.}, P_{comp}) = 1 - S(P_{i.d.}, P_{comp}) \in [0, 1]$
 $S_{ACD} = \{(C_{i.d.}, C_{comp}) | \max_{C_{i.d.}, C_{comp}} D(P_{i.d.}, P_{comp}) \land |C_{i.d.}| = |C_{comp}|$

Protocol Three: Few-Shot

$$S_{Few-Shot} = \left\{ \left(\mathcal{C}_{i.d.}, \mathcal{C}_{comp} \right) \middle| \left(A_i^{t_i} \right)_{1 \le i \le m}^{1 \le t_i \le a_i} in \ \mathcal{C}_{i.d.} \land \min \left| \mathcal{C}_{i.d.} \right| \right\}$$

[4]Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International conference on machine learning. PMLR, 2017.

