Benchmarking and Improving Compositional Generalization
of Multi-aspect Controllable Text Generation
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Motivations:

* Compositional generalization is a crucial property of multi-aspect
controllable text generation, which refers to the model’s ability to
generate text with attribute combinations recombined by single
attributes from the training data.

* Previous work mainly focused on enhancing the performance of
multi-attribute controllable text generation within the training
data distribution, while neglecting the model’s generalization
capabilities outside of the training data distribution®.
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Benchmark: CompMCTG
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Split the whole dataset C into two disjoints sets: in-distribution
set C; 4. and compositional set C;,,. The formal definition of an

eligible split s(C) = C; 4., Ccomyp as following:
L
C = c/ququx '”Xcﬂm — {(Al )ISiSmll = tl < al}
C=Ciq U Ccomp: Cia N Ccomp =0

{att|3c € Cromp, att € ¢} S {att|3c € C; 4, att € ¢}

* Protocol One: Hold-Out

Shotd-out = {(Ci.a. CJcomp)lccomp € C, Ccompl =K,Ciq = C\Ccomp}

e Protocol Two: ACD.

1. Inspired by Keysers?. Calculate frequency density of (At‘ A. )
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2. Introduce the Chernoff Coefficient S(P, Q)

C € {Ci.d.: Ccomp}
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3. Define the ACD: D(P; 4, Promp) = 1 — S(Pia, Promp) € [0,1]
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Protocol Three: Few-Shot
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Meta-MCTG Algorithm:

 Inspired by previous meta-learning works?> targeting generalization,
we aim to leverage Model-Agnostic Meta Learning (MAML?*) to
mitigate the overfitting problem in join-training-based MCTG.
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Results in CompMCTG:

Control Acc Gaps between Compositional and I.D. Testing
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Results in Meta-MCTG:

Performance Gap of CTRL, ConPrefix, and DCG with and without Meta-MCTG
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compositional generalization gap with different divergences
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